Suponiendo que el cumpleaños de cada persona se distribuya de manera uniforme en los 365 días:
Para alguien que tenga un cumpleaños hoy, eso significa que no es el caso de que nadie tenga un cumpleaños hoy.
Para que nadie tenga un cumpleaños hoy, eso significa que las 23 personas deben tener cumpleaños en uno de los 364 días restantes.
Por lo tanto, el complemento es:
- ¿Dónde puedo encontrar / hacer nuevos amigos?
- Cómo ayudar a mi amiga que se siente insegura sobre sí misma.
- Cómo explicarle a mi amigo cómo es el espacio masivo.
- Cómo saber si mi mejor amigo masculino me quiere sin preguntarle directamente y potencialmente hacer las cosas incómodas
- Quiero decirle a mi amiga que fui violada porque ella es la única persona en la que confío, pero ahora mismo estamos en una pelea de un mes, ¿qué debo hacer?
[math] \ left (\ dfrac {364} {365} \ right) ^ {23} [/ math]
Eso significa que la probabilidad de que alguien tenga un cumpleaños hoy sería de aproximadamente 0.06115058190745473394, o un poco más del 6 por ciento.
Ahora puede que se pregunte por qué esta probabilidad es mucho menor. Hay 2 cosas que pueden causar esto que podrían facilitarte la comprensión.
- Hoy es solo 1 día, para que 2 personas compartan un cumpleaños, ese cumpleaños compartido podría ser CUALQUIERA de los 365 días, por lo que hay 364 días más que podrían tener un partido
- Lo opuesto al problema del cumpleaños tradicional es que el cumpleaños de TODOS sea diferente. En esta pregunta, es muy posible que las personas compartan un cumpleaños, siempre que ese cumpleaños compartido sea uno de los 364 que no sea hoy.